BF3'**OEt2-Mediated Rearrangement of Cyclopropyl Carbinols: A Concise Route to Polycyclic Cyclobutanes**

Christophe Hardouin, Frédéric Taran, and Eric Doris*

CEA/Saclay, Service des Mole´*cules Marque*´*es, Ba*ˆ*t. 547, De*´*partement de Biologie Cellulaire et Mole*´*culaire, 91191 Gif sur Yvette Cedex, France*

eric.doris@cea.fr

Received February 23, 2001

Introduction

The acid-catalyzed rearrangement of cyclopropylcarbinols and of analogous systems is well documented.¹ The reaction proceeds through the initial formation of a cyclopropylcarbinyl cation² followed by either ring expansion (path A) or ring fission (path B) of the threemembered carbocycle (Scheme 1). This produces either a cyclobutyl or an allylcarbinyl cation.³ These intermediates can be trapped by various nucleophiles.4

The driving forces for the cyclopropylcarbinyl-cyclobutyl interconversion could be the relief of ring strain and the formation of a more stable carbocationic intermediate. This transformation is closely related to the Wagner-Meerwein rearrangement.⁵ Recently, Vonwiller et al. reported the intramolecular trapping of an arylfenchyl-derived carbocation by aniline or phenol nucleophiles.6 With these results in mind, we examined the reaction of phenol-substituted cyclopropylcarbinol **1** under Lewis acid conditions and found that, upon treatment with 0.5 equiv of boron trifluoride etherate in CH_2Cl_2 , 1 was smoothly converted to 1-phenyl-2-oxa-3,4-benzobicyclo- [3.2.0]heptane **2** in nearly quantitative yield within 15 min (Scheme 2).

Results and Discussion

A possible reaction mechanism is depicted in Scheme 3. The first step involves the BF_3 ·OEt₂-induced formation of a cyclopropylcarbinyl cationic species **3**. This intermediate is in equilibrium with the more stable (presumably) cyclobutyl cation **4**, which is internally trapped by the

Scheme 1

adjacent hydroxyl group of the phenol. This tandem rearrangement-carbocation trapping provides concise access to polycyclic cyclobutane **2**.

To gauge the scope and limitations of this reaction, various substrates were prepared by metal-halogen exchange on the appropriate bromophenol,⁷ followed by addition of the corresponding cyclopropanecarbaldehyde.⁸ The resulting phenol-linked cyclopropylcarbinols were then subjected to reaction with BF_3 ·OEt₂ at room temperature. The overall yields were excellent and, in every case, greater than 90%. The reaction was successfully extended to 2-[1-hydroxy-1-(1-phenylcyclopropyl)methyl] naphthol (Table 1, entry 2). The substitution of the cyclopropane ring was also studied and demonstrated that the process worked equally well on aryl or alkyl C1 substituted cyclopropanes (Table 1, entries 1, 3, and 4), as well as on tertiary carbinols (Table 1, entry 5). The effect of the stereochemistry of the starting cyclopropane was investigated: Both *cis*- (entry 6) and *trans*-cyclopropanes (entry 7) gave comparable yields but different ratios (95:5 and 65:35, respectively) of the two regioisomeric methylcyclobutanes. The main product resulted, in both examples, from the 1,2-migration of the carboncarbon bond bearing the methyl group.⁹ It should be noted that for each regioisomer a single diastereomer was obtained, albeit with unknown stereochemistry of the methyl group. Finally, a rearrangement attempt was conducted on substrate **5** (Table 1, entry 8). Unfortunately, under the aforementioned conditions, **5** afforded

^{*} To whom correspondence should be addressed. Fax: +33- 169087991.

⁽¹⁾ Fitjer, L. In *Methods in Organic Chemistry* (Houben-Weyl), 4th ed.; de Meijere, A., Ed.; G. Thieme Verlag: Stuttgart, 1997; Vol. E17e, pp 251-316. Klunder, A. J. H.; Zwanenburg, B. In *Methods in Organic Chemistry* (Houben-Weyl), 4th ed.; de Meijere, A., Ed.; G. Thieme
Verlag: Stuttgart, 1997; Vol. E17c, pp 2419–2437. For a recent study,
see: Kevill D. N.: Abduliaber. M. H. *J. Orø Chem* 2000. 65 2548– see: Kevill, D. N.; Abduljaber, M. H. *J. Org. Chem.* **²⁰⁰⁰**, *⁶⁵*, 2548- 2554.

⁽²⁾ Olah, G. A.; Reddy, V. P.; Prakash, G. K. S. *Chem. Rev.* **1992**,

⁹², 69-95. (3) Wong, H. N. C.; Hon, M. Y.; Tse, C. W.; Yip, Y. C.; Tanko, J.;

Hudlicky, T. *Chem. Rev.* **¹⁹⁸⁹**, *⁸⁹*, 165-198. (4) Sarel, S.; Yovell, J.; Sarel-Imber, M. *Angew. Chem., Int. Ed. Engl.* **1968**, *7*, 577–588. Kanemoto, S.; Shimizu, M.; Yoshioka, H. *Tetrahe-dron Lett.* **1987**, *28*, 6313–6316. Thielemann, W.; Schäfer, H. J.; Kotila, *dron Lett.* **1987**, *28*, 6313–6316. Thielemann, W.; Schäfer, H. J.; Kotila,
S. *Tetrahedron* **1995**, *51*, 12027–12034. Kutney, J. P.; Chen, Y. H.;
Rettig, S. J. *Can. J. Chem.* **1996**, 74, 1753–1761.
(5) March, J. In *A*

and Structure, 4th ed.; Wiley: New York, 1992; pp 1068-1072. (6) Starling, S. M.; Vonwiller, S. C. *Tetrahedron Lett.* **1997**, *38*, ²¹⁵⁹-2162. Starling, S. M.; Vonwiller, S. C.; Reek, J. N. H. *J. Org. Chem.* **¹⁹⁹⁸**, *⁶³*, 2262-2272.

⁽⁷⁾ Talley, J. J. *Synthesis* **1983**, 845–847.
(8) Cyclopropanecarbaldehydes were prepared by Simmons–Smith
:lopropanation_of_the_corresponding_allylic_alcohol_followed_by cyclopropanation of the corresponding allylic alcohol, followed by perruthenate oxidation of the resulting cyclopropylcarbinol; see: Den-mark, S. E.; Edwards, J. P. *J. Org. Chem.* **¹⁹⁹¹**, *⁵⁶*, 6974-6981. Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. *Synthesis* **¹⁹⁹⁴**, 639- 666.

⁽⁹⁾ Julia, M.; Noël, Y.; Guégan, R. *Bull. Chem. Soc. Fr.* **1968**, 3742–
3749. Julia, M.; Noël, Y. *Bull. Chem. Soc. Fr.* **1968**, 3749–3755. Julia, M.
3756–3761. Trost. B. M. M.; Noël, Y. *Bull. Chem. Soc. Fr.* **1968**, 3756-3761. Trost, B. M.; Ornstein, P. L. *J. Org. Chem.* **¹⁹⁸³**, *⁴⁸*, 1131-1133.

^a Ratios in parentheses. *^b* Isolated yields. *^c* Combined yields.

a moderate yield (47%) of 4-methyl-2-phenyl-2,3-dihydrobenzoxepin **6** (Scheme 4), together with many unidentified products. This result can be ascribed to the cationstabilizing effect of the phenyl ring that directs the preferential intermediacy of the allylcarbinyl carbocation **7** over the "classical" cyclobutyl cation.

The utilization of substoichiometric amounts of BF_3 . $OEt₂$ (0.5 equiv) in these reactions can be rationalized by the fact that HF is probably released during the rearrangement of the cyclopropylcarbinols. The acidic hydrogen fluoride then further catalyzes the formation of the transient cyclopropylcarbinyl carbocation.

In conclusion, we have shown that the boron trifluoride etherate-mediated rearrangement of phenol-substituted cyclopropylcarbinols provides a novel and direct access to polycyclic cyclobutane systems through a process analogous to the Wagner-Meerwein rearrangement.¹⁰

Experimental Section

General Methods. ¹H NMR and ¹³C NMR spectra were recorded at 300 and 75 MHz using residual CHCl₃ (7.25 ppm) and CDCl₃ (77 ppm) as internal standard, respectively. Flash column chromatography was performed on Merck silica gel (60 Å, 230-400 mesh). All reactions were performed under Ar using anhydrous solvents. HRMS were recorded at the "Centre Régional de Mesures Physiques de l'Ouest". Reagents were purchased from Aldrich Chemical Co.

General Procedure for the Synthesis of Polycyclic Cyclobutanes for the Preparation of 1-Phenyl-2-oxa-3,4 benzobicyclo[3.2.0]heptane (2) (Table 1, Entry 1). At room temperature, to a stirred solution of BF_3 · OEt_2 (12 μ L, 0.5 equiv) in 2 mL of CH_2Cl_2 was added dropwise, over a period of 10 min, 2-[1-hydroxy-1-(1-phenylcyclopropyl)methyl]phenol **1** (0.040 g, 0.166 mmol, 1 equiv) in 3 mL of $\widehat{\text{CH}_2\text{Cl}_2}$. The reaction was further stirred for 5 min and quenched with 10% $Na₂CO₃$. The aqueous layer was extracted twice with CH_2Cl_2 . The combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure. After chromatography on silica (hexane/ EtOAc, 9:1), 1-phenyl-2-oxa-3,4-benzobicyclo[3.2.0]heptane **2** was obtained as a colorless solid (mp 44 °C, 0.036 g, 97%): 1H NMR *^δ* 2.15 (m, 1H), 2.57 (m, 1H), 2.80-2.87 (m, 2H), 4.04 (m, 1H), 6.94 (m, 2H), 7.22 (m, 2H), 7.37 (m, 1H), 7.44 (m, 2H), 7.60 (d, *^J*) 8.7 Hz, 2H); 13C NMR *^δ* 24.4, 34.6, 49.0, 91.5, 110.2, 120.7, 124.8, 127.6, 128.3, 128.4, 132.0, 141.7, 160.4; MS (CI/CH4) 223 $(M + 1, 100)$; IR (KBr) 1237 (C-O-C); HRMS calcd for $C_{16}H_{14}O_1$ (M)⁺ 222.1044, found 222.1037.

1-Phenyl-2-oxa-3,4-naphthobicyclo[3.2.0]heptane (Table 1, Entry 2): oil; 91%; 1H NMR *δ* 2.35 (m, 1H), 2.72 (m, 1H), 2.84-3.04 (m, 2H), 4.47 (m, 1H), 7.26-7.88 (m, 11H); 13C NMR *δ* 23.7, 34.7, 48.4, 92.4, 112.8, 122.4, 122.9, 123.4, 125.0, 126.7, 127.7, 128.5, 128.8, 129.5, 130.6, 141.6, 157.7; MS (CI/NH3) 307 $(M + 35, 100)$; HRMS calcd for C₂₀H₁₆O₁ (M)⁺ 272.1201, found 272.1195.

1-(3-Methoxyphenyl)-2-oxa-3,4-benzobicyclo[3.2.0] heptane (Table 1, Entry 3): oil; 97%; 1H NMR *δ* 2.10 (m, 1H), 2.57 (m, 1H), 2.76-2.88 (m, 2H), 3.84 (s, 3H), 4.02 (m, 1H), 6.85- 6.95 (m, 3H), $7.11 - 7.25$ (m, 4H), 7.34 (t, $J = 7.9$ Hz, 1H); ¹³C NMR *δ* 24.5, 34.8, 49.1, 55.2, 91.4, 110.2, 110.8, 112.9, 117.1, 120.7, 124.9, 128.3, 129.5, 132.0, 143.4, 159.7, 160.3; MS (CI/ NH₃) 270 (M + 18, 100); HRMS calcd for C₁₇H₁₆O₂ (M)⁺ 252.1150, found 252.1140.

1-Hexyl-2-oxa-3,4-benzobicyclo[3.2.0]heptane (Table 1, Entry 4): oil; 90%; ¹H NMR δ 0.87 (t, $J = 6.7$ Hz, 3H), 1.29-1.43 (m, 8H), 1.81-1.94 (m, 3H), 2.16-2.43 (m, 3H), 3.61 (m, 1H), 6.83 (m, 2H), 7.14 (m, 2H); 13C NMR *δ* 14.0, 22.5, 23.4, 23.9, 29.5, 31.7, 32.9, 36.3, 45.5, 91.9, 110.0, 120.3, 125.2, 128.1, 132.6, 160.6; MS (CI/NH₃) 230 (M⁺, 100); HRMS calcd for $C_{16}H_{22}O_1$ (M)⁺ 230.1670, found 230.1662.

5-Methyl-1-phenyl-2-oxa-3,4-benzobicyclo[3.2.0] heptane (Table 1, Entry 5): oil; 91%; 1H NMR *δ* 0.96 (s, 3H), 2.14 (m, 1H), 2.31 (m, 1H), 2.63 (m, 1H), 2.80 (m, 1H), 6.95 (m, 2H), 7.16-7.25 (m, 2H), 7.35 (m, 1H), 7.42 (m, 2H), 7.51 (m, 2H); 13C NMR *^δ* 22.1, 31.1, 32.1, 53.5, 94.2, 110.3, 120.9, 123.8, 125.6, 127.5, 128.2, 128.3, 138.7, 159.5; MS (CI/NH3) 254 (M + 18, 100); HRMS calcd for $C_{17}H_{16}O_1$ (M)⁺ 236.1201, found 236.1193.

6-Methyl-1-phenyl-2-oxa-3,4-benzobicyclo[3.2.0] heptane and 7-Methyl-1-phenyl-2-oxa-3,4-benzobicyclo- [3.2.0]heptane (Table 1, Entries 6 and 7). These compounds were prepared starting from either *cis*- (entry 6) or *trans-*2-[1 hydroxy-1-(2-methyl-1-phenylcyclopropyl)methyl]phenol (entry 7). A mixture of 6-methyl- (compound **b**) and 7-methyl-1-phenyl-2-oxa-3,4-benzobicyclo[3.2.0]heptane (compound **a**) was obtained in both examples: entry 6 (ratio **b/a**: 95/5, oil, 92%), entry 7 (ratio **b/a**: 65/35, oil, 94%): ¹H NMR δ 0.74 (d, *J* = 7.1 Hz, 3Ha),

⁽¹⁰⁾ Neef, G.; Cleve, G.; Ottow, E.; Seeger, A.; Wiechert, R. *J. Org. Chem.* **¹⁹⁸⁷**, *⁵²*, 4143-4146.

1.31 (d, $J = 6.7$ Hz, 3Hb), 2.07 (m, 1Ha), 2.31 (m, 1Ha), 2.45-2.53 (m, 2Hb), 2.99 (m, 1Hb), 3.10 (m, 1Ha), 3.68 (brs, 1Hb), 4.18 (d, $J = 8.4$ Hz, 1Ha), 6.89 (m, 2Ha + 2Hb), 7.16 (m, 2Ha + 2Hb), 7.37-7.53 (m, 5Ha + 5Hb); 13C NMR *^δ* 16.6 (a), 21.3 (b), 33.1 (a), 34.0 (b), 41.1 (b), 41.6 (a), 44.6 (a), 55.4 (b), 90.3 (b), 95.3 (a), 109.9 (b), 110.3 (a), 120.6 (b), 124.2 (b), 125.1 (a), 125.3 (b), 125.8 (a), 127.4 (a), 127.7 (b), 128.1 (a), 128.2 (b), 128.4 (b), 131.6 (b), 132.1 (a), 138.3 (a), 142.5 (b), 159.8 (a), 160.7 (b); MS (CI/NH₃) 254 (M + 18, 100); HRMS calcd for C₁₇H₁₆O₁ (M)⁺ 236.1201, found 236.1193.

4-Methyl-2-phenyl-2,3-dihydrobenzoxepin (6) (Table 1, Entry 8): colorless solid; mp 65 °C; 47%; ¹H NMR δ 1.97 (s, 3H), 2.60 (d, $J = 18.5$ Hz, 1H), 3.02 (dd, $J = 10.5$ Hz, 18.5 Hz), 4.99 (d, $J = 10.5$ Hz, 1H), 6.24 (s, 1H), 6.94-7.46 (m, 9H); ¹³C NMR *δ* 26.5, 45.9, 80.7, 120.2, 122.6, 124.7, 125.9, 127.1, 127.5, 128.4, 128.7, 131.9, 137.7, 142.2, 158.7; MS (CI/NH3) 254 (M + 18, 100); HRMS calcd for $C_{17}H_{16}O_1$ (M)⁺ 236.1201, found 236.1193.

Acknowledgment. Dr. J. Albert Ferreira is gratefully acknowledged for reviewing this manuscript. Dr. Luc Dechoux is also acknowledged for helpful discussions.

Supporting Information Available: Reproductions of 1H and $1\overline{3}\overline{C}$ NMR spectra of products described in Table 1. This material is available free of charge via the Internet at http://pubs.acs.org.

JO0102056